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SIGNIFICANCE AND EXPLANATION @5

AThe central 1imit theorem is a fundamental theorem in probability and
statistics. It states that the probabiiity distribution of the sum of a large
number of small and mutually independent random numerical observations
approaches a normal distribution as the number of observations increases. The
Lindeberg condition is a condition for which the central limit theorem holds.
It has been proved to be both necessary and sufficient.

A Poincaéé;type inequaliity is an inequality which relates the integral of
the square of a function to the integral of the square of its derivative. 1In
this report we give a new proof of the central limit theorem by using

Poincaré~type inequalities to prove both the necessity and sufficiency of the

Lindeberg condition.
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r THE CENTRAL LIMIT THEOREM AND POINCARE-TYPE INEQUALITIES
{ Louis H. Y. Chen
’ Borovkov and Utev (1984) defined the functional
ox) = sup JeElalOl
v g o0 R{g'(Xx)]

for any random variable X with finite variance 02, where the supremum is

taken over the class of absolutely continuous functions g such that 0 <
var[g(X)] < #®. They proved that

(1) U(X) » 1 and if U(X) = 1 then X has a normal distribution.

Using this result they further proved that

(2) if x1,x2,... is a sequence of random variables such that U(xn) +> 1

1/2 exists

then the moment generating function of (xn - Exn)/[vur(xn)]

and converges to that of the standard normal random variable in a

neighborhood of zero.

It is natural to ask if (1) can also be applied to prove the central
limit theorem under the Lindeberg condition. This question was in fact raised

by S. Xotani in private communication with the author and motivated the

present worke.

The existence of the moment generating function of X, in (2) is dque to

the finiteness of U(xn) (see Borovkov and Utev, Theorem 2). Since the
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central limit theorem does not require such a strong condition, arquments

different from those of Borovkov and Utev would have to be used. It turns out

s T R

that a Poincaré-type inequality for sums of independent random variables

proved along the same line as in Chen (1985, Section 2) is the key to this

IERRRE IEMA

problem. Using this inequality we can prove not only the sufficiency of the
l v Research partially sponsored by the United States Army under Contract No.
N DAAG29-80-C-0041. Part of this work was done when the author was visiting the
; Institute for Mathematics and Its Applications at the University of Minnesota.
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Lindeberg condition but also its necessity.
In order to facilitate application, we restate (1) in a Aifferent form.
Let C;CR) be the class of functions g such that g and g' are bounded

and continuous.

PROPOSITION 1. Let X be a random variable with finite variance

02 > 0. If vVarig(x)] < ozz[g'(X)]2 for ge¢ cg(n). then X has a normal
distribution.
To see that (1) and Proposition 1 are equivalent, we define
U_(X) = sup Var([g(X)]
0 = o?etg' (0112
qcco(:R)
var(g(X)]>0
and
UB(X) = sup —%EEL&L&LLE
]
gec;(n) o0 Elg*'(X)]
Var{g(x)]>0

where C;CR) is the cilass of C° functions on R with compact support.
Then we observe that by definition, U(X) » 1 and that by Theorem 2(i) of
Borovkov and Utev, Uo(x) = UB(x) = U(X).

Since we are interested in both an application of Poincaré-type
inequalities and a new proof of the central limit theorem, it is fitting to
examine the arguments which lead to (1) and hence Proposition 1. There are
three different proofs of (1). All begin with a variational argument. After
that the first uses the method of moments (see Borovkov and Utev, Theorem 3).
The second uses the characteristic function (see Chen and lLou (1985, Theorem

2.1 and Corollary 2.1). The third uses differential equations (see Chen and

mu' Lemmas 4.1 and 4-2).
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Borovkov and Utev (1984) defined the functional

U(X) = sup Var{g(X)]
g o’rlq'(x))2
2

for any random variable X with finite variance 0“, where the supremum is

taken over the class of absolutely continuous functions g such that 0 <

vVar[g(X)] < =. They proved that

(1) U(X) > 1 and if U(X) = 1 then X has a normal distribution.

Using this result they further proved that

(2) |1if x1,x2,... is a sequence of random variables such that U(xn) > 1
then the moment generating function of (xn - !:xn)/[Var:(xn)]V2 exists

and converges to that of the standard normal random variable in a

neighborhood of zero.

It is natural to ask if (1) can also be applied to prove the central
limit theorem under the Lindeberg condition. This guestion was in fact raised
by S. Kotani in private communication with the author and motivated the
present work.

The existence of the moment generating function of X, in (2) is due to
the finiteness of U(Xn) (see Borovkov and Utev, Theorem 2). Since the
central limit theorem does not require such a strong condition, arguments
different from those of Borovkov and Utev would have to be used. It turns out
that a Poincaré-type inequality for sums of independent random variables
proved along the same line as in Chen (1985, Section 2) is the key to this

problem. 1Using this inequality we can prove not only the sufficiency of the

Research partially sponsored by the United States Army under Contract No.
DAAG29-80-C-0041. Part of this work was done when the author was visiting the
Institute for Mathematics and Its Applications at the University of Minnesota.
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Lindeberg condition but also its necessity.
In order to facilitate application, we restate (1) in a different form.
Let C;(R) be the class of functions g such that g and g' are bounded

and continuous.

PROPOSITION 1. Let X be a random variable with finite variance
02> 0. If var[g(x)] < 02E(g'(X)]2 for ge CIR), then X has a normal

distribution.

To see that (1) and Proposition 1 are equivalent, we define

U, (X) = sup Varlg(X))
0 - o2elg’ (%112
quO(R)

Var([g(X)]>0

and

UB(X) = sup ghr[ (x)]2
o"Elg'(X)]

gcc;(:R)
Var{g{x)}]>0
where C;(R) is the class of C  functions on R with compact support.
Then we observe that by definition, U(X) > 1 and that by Theorem 2(1i) of
Borovkov and Utev, Ug(X) = Ug(X) = U(x).

Since we are interested in both an application of Poincare-type
inequalities and a new proof of the central limit theorem, it is fitting to
examine the arguments which lead to (1) and hence Proposition 1. There are
three different proofs of (1). ALl begin with a variational argument. After
that the first uses the method of moments (see Borovkov and Utev, Theorem 3).
The second uses the characteristic function (see Chen and Lou (1985, Theorem

2.1 and Corollary 2.1). The third uses differential equations (see Chen and

Lou, Lemmas 4.1 and 4.2).
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We now prove the sufficiency of the lLindeberg condition. 1let

xm,...,xm. s n2 1, be a trianqular array of row-wise independent random
n

‘ variables with zero means and finite variances 0'2‘1,...,0'2“ such that
r , r ) n
E cni = 1. Let Wn - Z xni and wn = Wn - xni. By Theorem 2.1 of Chen
i=1 i=1
(1985),
“n w‘(‘“
Var[g(W,)] < y E[var g{w )] S
n A
i=1 e
for q e c'(@®) such that lg(x)] < c(1 + |x!) for some constant C. Now the L
right hand side of the inequality equals
5 ore™ (g - gty c M (g - gty e
§=1 n n n n T
A
o (1),,2 m
<V Elg(W ) = gqW ")) e
n n ]
i=1 .._..::.
. 2
n X
» =7 E{r ni q'(W(i) + t)dt]2
‘ -0 n
i=1
r
n X
* ni (1) 2
< T oEfx [0 g T+ 0))%ar)
i=1
r
n o (1) 2
- - ?
= 121 E{xni J'J»[I(xﬂi >t >0) - (X <t <O]gW T +t)) at}
rn
= 5 17 mgr ™ s 1% eyae
-0 n n
x i=1
; where x{1M(t) = EX;(1(X,; > &> 0) - I(X,; <t < 0)]> 0. Define the
i probability measure Vv, on B(IRZ) by
\ r,
N o (1) (1)
> Ry T = o FE(W ©7,e)% Tl(e)at
“ i=1
|
i for bounded and continuous functions € on IR2. Aiso define ¥ :IR2 + IR

by Y(x,y) = x+y. Then, comhining the above inequalities, we have the
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following Poincaré-type inequality for W, 3 For g ¢ C1GR) such that

lgtx)] < c(t + |x|) f£or some constant c,

(3) Var [g(W,)] < [m (g*)2av o1 . . |
M
1) (2) A0
Let v; (A) = v (A<R) and v “'(A) =V @RxA) for A €B(R). Since %

r
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n
vt(‘z)(hl >e) = T 1ol l(‘_(‘“(t)dt
i=1
r
=7 rlx I(dx | -yt
1=1 ni ni

l W
< 1
) ”ni”'xni' >e)
i=1
the Lindeberg condition implies that VQZ) =) €qr the Dirac measure at 0,

as n * ®©, Now Ewr(‘i)2 < Ew: = 1 for each n and i implies that {v£1)}

SOl .

is tight and hence relatively compact. Let {v;}’} be a weakly convergent

subsequence and let v,‘,]’ ==> [ (Z). Then Ve == L(g) and hence

vn,o¢'1 ==> | (Z). It follows from (3) that for g € C;(no, ‘
(4) var(g(2)] ¢ Elg"(2)]1% . .
:? If we show that Z has a standard normal distribution, then
' uwh) ==> N(0,1) is proved. By Proposition 1 it remains to prove that
: vVar(Z) = 1. First we observe that by virtue of Ewi =1, Z is square
:: integrable. 1Let P, € cg(nn be increasing such that
! x if Ix| < a 3

Oa(x) = a+1 if x> a+2
-a-1 if x < -a-2 . At

:
'
2
5

By (3),
var(W,, - 9,(W )1 < [ (1o 2av ,ou” .
converges weakly, {Vn.°w-1} is tight. Therefore for € > 0,

-1

varii, - 0,00 )] < [ ey o7 e

.
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for sufficiently large a. Now (Var)v2 is a seminorm and so

V. V. v
- 2| = 2 o 2
| l1 - (var(e, (W ,1)172| = l(varw )] (Var(e, (W ,1)172|
< [Var(W_, - o (W )11’2
n' a n'
1
< t»:/2 ]

By letting n' + ® and then a + ®», we obtain
1 1
I - (var(z)12| < ¢’2 .
This implies that Var(Z) = 1 and hence L(wn) =) N(0,1).

We now prove the necessity of the lLindeberg condition. First we need two

simple propositions.

PROPOSITION 2. The Lindeberg condition holds if and only if véz) ==> € (e

PROOF. The "only if" part has been proved above. The "if" part follows

o from the following inequalities:

r r

n + n

) - -

Elx ldx 1 -ey"> T elx ldx, | -exddx 1> 2)
i=1 i=1
rn
1 2
> 5 1);1 Exni:[(fxnil > %) .

For the next proposition let C%OR) be the class of functions g on IR
such that g, g' and g'' are uniformly continuous, |g(x)| < C(1 + |x|)

for some constant C and g' and g'' are bounded.

PROPOSITION 3. Let Z and T be independent random variables such
that 7 has the normal distribution with mean 0 and variance 02 > 0. 1If

var{g(z)] < azE[q'(z+T)]2 for g ¢ C%OR), then T = 0 w.p. 1.
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PROOF. By the variational argument used in Borovkov and Utev (1984) or
Chen and Lou (1985), we have
EZh(Z) = 02Eh'(Z+T)
for h € chR). This equation also holds for h(x) = x3 by approximating
this function by functions of C%CR). So
304 = gz% = 92e(z+m)2 .

The finiteness of E(Z+T)2 and Ez? implies that of ETZ. By expanding

<,
ey

E(Z+T)2 we obtain 02 = 02 + E'I'2 which implies that ET2 =0 andso T =0

w.p. 1.
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For the proof of the necessity of the Lindeberg condition we need the

v

-
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usual assumption that for every € > 0, max P(Ixni| >€)+ 0 as n+ =,
1<i<tn

Let g € C3(R). For every € > 0, let § > 0 be such that l(g'(x))2 -

(q'(y))2| < ¢ for |x-y| < §. Then we have

b g
n
1Y = (i) 2 2, (i)
O - (T AR PR CATC S Bl M O LY \
r Y
" o (i) e (i)
(s) <cl ¥ oplx I > [ xtwmat+e § [ x “(riat]
i=1 ni — n i=1 n

< c[ max P('xni' > 8) + ¢l
1<i<rn

for some constant C. Define the probability measure v, on B(R) by

Y
n .
gt = 1 [7, f(t)K:\l)(t)dt
i=1

for bounded and continuous functions f on R. In view of (5), the
inequality (3) can be written as

(6) var{g(w )] < f:., E[g'(wn+t)]2 Gn(dt) +o(1) .

Suppose L(W,) ==> N(0,1). Let {v ,} be a subsequence of (v} which e

converges vaguely to a subprobability measure V. Then for ge cg(R). the
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class of 02 functions on IR with compact support, it is not Aifficult to

show that

[° Elg'(w_ + £)125_,at) » [ Elg'(z+T) ]2 V(at)

- Elg' (W, 11 v - Elg
where Z 1is a standard normal random variable. So by (6) we have

© 2~
(7 var(g(z)] < [ E[g'(z+T)]" V(ar) .
By approximating c%(no by functions of Cg(ﬂn, (7) holds for g ¢ C%OR).
By letting g(x) = x, we get
o0 ~
1< [T Viar)
and so v is a probahbility measure. By Proposition 3, V must be €ge
~ ~ (2)

Hence vn => EO. But vn = vn . By Proposition 2, the Lindeberg condition

holds. This completes the proof.
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